首页> 外文OA文献 >Multiple ellipse fitting by center-based clustering
【2h】

Multiple ellipse fitting by center-based clustering

机译:通过基于中心的聚类进行多重椭圆拟合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper deals with the multiple ellipse fitting problem based on a given set of data points in a plane. The presumption is that all data points are derived from k ellipses that should be fitted. The problem is solved by means of center-based clustering, where cluster centers are ellipses. If the Mahalanobis distance-like function is introduced in each cluster, then the cluster center is represented by the corresponding Mahalanobis circle-center. The distance from a point a∈R^2 to the Mahalanobis circle is based on the algebraic criterion. The well-known k-means algorithm has been adapted to search for a locally optimal partition of the Mahalanobis circle-centers. Several numerical examples are used to illustrate the proposed algorithm.
机译:本文基于平面中一组给定的数据点处理多重椭圆拟合问题。假定所有数据点均来自应拟合的k个椭圆。通过基于中心的聚类(聚类中心为椭圆)解决了该问题。如果在每个聚类中引入类Mahalanobis距离函数,则聚类中心由相应的Mahalanobis圆心表示。从点a∈R^ 2到马哈拉诺比斯圆的距离基于代数准则。众所周知的k均值算法已经过改进,可以搜索Mahalanobis圆心的局部最优分区。使用几个数值示例来说明所提出的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号